Web Analytics
Suscríbete
Suscríbete
Big data

Los datos, el nuevo petróleo para la industria

Por Roger Agustín, CEO y cofundador de Prenomics
Pexels thisisengineering 3862618
Es posible mejorar la previsión de demanda y la localización de activos, basándola en predicciones más precisas y significativas sobre dónde y cuándo habrá que proveerlos.
|

El análisis de datos y la transformación digital son ya una realidad en el día a día de muchas compañías. También en las industriales, que están experimentando un crecimiento remarcable en el uso de la ciencia de datos y apuestan ya con fuerza por ello.


En la actualidad, nuevos retos como la automatización necesitan la adopción de técnicas de Big Data para aumentar la eficiencia y mejorar aspectos, como el tiempo de funcionamiento, la aceleración de la producción y la disminución de errores en industrias que se caracterizan por ser cada vez más complejas e interconectadas.


Sectores económicamente fuertes y que buscan la innovación constante en sus procesos, como el químico, el farmacéutico, el energético o el petroquímico, son los que probablemente tienen uno de los mayores potenciales para integrarse en la transformación digital y lograr dar el gran salto a lo que se conoce como industria 4.0. 


Forklift 835340 1920


Y esto no aplica solo a las grandes multinacionales, sino que cada vez hay más pequeñas y medianas empresas que también se atreven y son capaces a implementar soluciones de Inteligencia empresarial y Machine Learning en su operativa.


Casi cualquier empresa puede mejorar la toma de decisiones, la gestión de sus recursos y la operativa de la organización si cuenta con un software de Data Analytics que analice la información en tiempo real de forma autónoma. Tanto los datos internos y experiencias anteriores asimiladas, como otros datos de fuentes externas. 


Nuevas herramientas

Gracias a estas nuevas herramientas, que clasifican la información recopilada y extraen conclusiones relevantes, se puede explotar el valor potencial de toda la información en bruto de que disponen ya las compañías.


Las soluciones analíticas pueden integrar y conectar procesos, además de mejorar transversalmente la eficiencia de toda la cadena de valor de la empresa, desde las compras hasta la gestión de existencias. Esto implica la modernización de las capacidades productivas, pero también posicionarse a la vanguardia de la sostenibilidad al contribuir a que los procesos sean más seguros tengan un menor impacto ambiental gracias a la óptima gestión de los recursos.


Pexels spacex 586097


El objetivo final del análisis de datos es generar patrones de predicción y obtener información agregada y de fácil comprensión que pueda ayudarnos directamente a corto y medio plazo a evaluar decisiones estratégicas -como planes de expansión y desarrollo o análisis financieros- con la máxima certeza posible.


Grandes palancas de crecimiento

Todo esto es hoy más importante y necesario que nunca debido a la difícil situación que estamos viviendo. Nos encontramos en un contexto económico y social de gran inestabilidad e incertidumbre, debido a la crisis generada por la Covid-19, situación que nos obliga a medir muy bien nuestros pasos


En este marco, el Big Data y la Inteligencia Artificial pueden ser una de las grandes palancas de crecimiento para las industrias. En cambio, retrasar su implantación puede hacernos correr el riesgo de quedarnos obsoletos, de perder marketshare y, en el peor de los casos, desaparecer del mercado en el medio o largo plazo.


Es cierto que ya hay algunas empresas que han aprovechado este periodo de parón o de menor volumen de trabajo para implantar tecnologías predictivas de análisis de datos para poder salir más reforzadas de la crisis. Pero muchas otras todavía son reticentes y se resisten a aplicarlas por miedo a su complejidad y/o coste. 


Es muy importante que aquellas que todavía no lo han hecho empiecen a dar pasos en este sentido, para estar preparadas y poder adaptarse más rápidamente y con más facilidad a los nuevos cambios que se avecinan.


Temor al coste

A menudo, uno de los obstáculos que frenan a muchas industrias es el temor al coste que puede suponer implantar las herramientas de análisis o incorporar nuevos profesionales al equipo o contratar una consultoría especializada que las pueda ayudar. 


Sin embargo, si bien es cierto que, en un inicio, es necesaria una inversión más o menos relevante dependiendo de cada caso, los beneficios a largo plazo serán notables: se dispararán la eficiencia y la productividad y, por ende, su competitividad y rentabilidad.


A continuación, hablaremos de ejemplos más concretos y aplicaciones reales del data science en el sector industrial, en los que se combina el análisis de datos, el Internet de las Cosas (IoT) y el Machine Learning.


La rentabilidad real de cada cliente

Aplicando analítica sobre la información de compra de los clientes y la información de los costes de producción del material, las empresas industriales tienen la posibilidad de modelizar la rentabilidad real de cada uno de los clientes e identificar diferentes palancas de incremento rentable. 


Esto mismo también se puede aplicar a la distribución de los productos industriales para analizar las interacciones con los clientes a lo largo de la cadena de valor y poder así, en función de esta información, anticipar necesidades, configurar las ofertas y determinar el canal óptimo para ofrecer esas ofertas, lo que redunda en una mejor experiencia y la retención del cliente.


Mejorar las previsiones de la demanda

Por otro lado, es posible mejorar la previsión de demanda y la localización de activos, basándola en predicciones más precisas y significativas sobre dónde y cuándo habrá que proveerlos. Esto puede ayudar a reaccionar antes a los cambios en la demanda, adecuar la producción industrial y a optimizar la localización de los activos y la adquisición de existencias, en función del stock y la demanda esperada.


Aumentar la eficiencia de la producción

Como ya habíamos anticipado, el data science puede ayudar a impulsar la eficiencia de los procesos productivos, con la consiguiente reducción de costes. 


Aplicando la analítica a la información de la cadena de producción industrial, se pueden agilizar y automatizar los procesos, así como crear un sistema de detección y monitorización de los puntos críticos que impiden obtener la máxima eficiencia y rentabilidad en la compañía.


Esto incluye también mejorar la eficiencia operativa, puesto que permite detectar de forma temprana errores humanos, fallos u otras desviaciones; hacer controles de calidad; aumentar la flexibilidad o mostrar rutas óptimas de producción o montaje.


Para acabar, quiero hacer hincapié en que estos tres ámbitos que he mencionado son solo algunos de los beneficios del análisis de datos, pero que hay muchos más que, a buen seguro, podréis aprovechar en vuestra compañía: la seguridad mejorada, el análisis de no conformidad, el mantenimiento predictivo, el descubrimiento de nuevas oportunidades de negocio o la detección de riesgos y de fraude, entre muchos otros.


Comentarios

Weg formacion
Weg formacion
Weg cursos Automatización

Con el objetivo de proporcionar a sus clientes un conocimiento más profundo sobre sus soluciones de automatización, Weg Iberia ha llevado a cabo una nueva formación especializada en variadores de frecuencia, arrancadores suaves, PLCs y HMIs.

Moeve 2
Moeve 2
Moeve Sostenibilidad descarbonización transición energética

Moeve, hasta hace muy poco conocida como Cepsa, ha dado un paso decisivo hacia la transición energética con un nuevo enfoque centrado en la sostenibilidad y la innovación. A través de iniciativas como el suministro de combustibles sostenibles y...

Anaip Senado
Anaip Senado
Anaip transformación del plástico industria plásticos

La industria de transformación de plásticos se enfrenta a desafíos críticos que ponen en riesgo su competitividad a nivel nacional e internacional. Para abordar esta situación, Anaip ha organizado una jornada el próximo 10 de abril en el Senado...

Advanced factories CIOs 1
Advanced factories CIOs 1
Advanced Factories congresos Inteligencia artificial sistemas de información sistemas de operaciones industria 4.0

El Industry 4.0 Congress, que tendrá lugar del 8 al 10 de abril en el marco de Advanced Factories, reunirá a expertos de diversos sectores que analizarán el impacto de la IA en los procesos de producción y en la integración de esos sistemas IT/OT.

Asepal congreso  epi
Asepal congreso  epi
Asepal protección laboral EPIs congresos

El 21 y 22 de mayo de 2025, Madrid será el punto de encuentro para más de 500 profesionales que se reunirán para abordar los desafíos de la seguridad laboral en el I Congreso del EPI. 

Enagas accionistas
Enagas accionistas
Enagás junta general Gas Hidrógeno descarbonización

Enagás celebró en Madrid su junta general de accionistas, recibiendo un amplio apoyo para su estrategia de crecimiento centrada en las infraestructuras de hidrógeno. Durante la reunión, que se llevó a cabo tanto presencial como telemáticamente...

Industria 1
Industria 1
Alianza por la Competitividad de la Industria competitividad

La industria española se encuentra en constante proceso de transformación para consolidar su papel como eje fundamental de la economía y avanzar en su crecimiento. En este sentido, expertos del sector abogan por la simplificación administrativa de los...

Utilcell formacion 1
Utilcell formacion 1
Utilcell cursos Pesaje células de carga

Con el objetivo de proporcionar a sus clientes los conocimientos y herramientas necesarias para mejorar la eficiencia y el rendimiento de sus sistemas de pesaje, Utilcell imparte formaciones especializadas en las que aborda diversos temas...

Pilz Hannover Messe
Pilz Hannover Messe
Pilz Automatización Hidrógeno

En la Hydrogen + Fuel Cells Europe, Pilz presentará sus soluciones de automatización en los ámbitos de seguridad funcional e Industrial Security para la industria del hidrógeno.

Moeve Aenor huella
Moeve Aenor huella
Moeve AENOR certificaciones economía circular Sostenibilidad transición energética

Moeve ha obtenido las certificaciones de Huella de Agua según ISO 14046:2016 y Residuo Cero de AENOR. La primera de ellas permite un mejor entendimiento de los impactos relacionados con el agua, así como disponer de una base para mejorar la...

 

 

Revista PQ
NÚMERO 1277 // 2025

Empresas destacadas

Acepto recibir comunicaciones comerciales relacionadas con el sector.

REVISTA